8 research outputs found

    Policy committee for adaptation in multi-domain spoken dialogue systems

    Get PDF
    Moving from limited-domain dialogue systems to open domain dialogue systems raises a number of challenges. One of them is the ability of the system to utilise small amounts of data from disparate domains to build a dialogue manager policy. Previous work has focused on using data from different domains to adapt a generic policy to a specific domain. Inspired by Bayesian committee machines, this paper proposes the use of a committee of dialogue policies. The results show that such a model is particularly beneficial for adaptation in multi-domain dialogue systems. The use of this model significantly improves performance compared to a single policy baseline, as confirmed by the performed real-user trial. This is the first time a dialogue policy has been trained on multiple domains on-line in interaction with real users.The research leading to this work was funded by the EPSRC grant EP/M018946/1 ”Open Domain Statistical Spoken Dialogue Systems”.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ASRU.2015.740487

    Multi-domain dialogue success classifiers for policy training

    No full text
    We propose a method for constructing dialogue success classifiers that are capable of making accurate predictions in domains unseen during training. Pooling and adaptation are also investigated for constructing multi-domain models when data is available in the new domain. This is achieved by reformulating the features input to the recurrent neural network models introduced in [1]. Importantly, on our task of main interest, this enables policy training in a new domain without the dialogue success classifier (which forms the reinforcement learning reward function) ever having seen data from that domain before. This occurs whilst incurring only a small reduction in performance relative to developing and using an in-domain dialogue success classifier. Finally, given the motivation with these dialogue success classifiers is to enable policy training with real users, we demonstrate that these initial policy training results obtained with a simulated user carry over to learning from paid human users

    Policy committee for adaptation in multi-domain spoken dialogue systems

    No full text
    Moving from limited-domain dialogue systems to open domain dialogue systems raises a number of challenges. One of them is the ability of the system to utilise small amounts of data from disparate domains to build a dialogue manager policy. Previous work has focused on using data from different domains to adapt a generic policy to a specific domain. Inspired by Bayesian committee machines, this paper proposes the use of a committee of dialogue policies. The results show that such a model is particularly beneficial for adaptation in multi-domain dialogue systems. The use of this model significantly improves performance compared to a single policy baseline, as confirmed by the performed real-user trial. This is the first time a dialogue policy has been trained on multiple domains on-line in interaction with real users

    Dialogue manager domain adaptation using Gaussian process reinforcement learning

    No full text
    Spoken dialogue systems allow humans to interact with machines using natural speech. As such, they have many benefits. By using speech as the primary communication medium, a computer interface can facilitate swift, human-like acquisition of information. In recent years, speech interfaces have become ever more popular, as is evident from the rise of personal assistants such as Siri, Google Now, Cortana and Amazon Alexa. Recently, data-driven machine learning methods have been applied to dialogue modelling and the results achieved for limited-domain applications are comparable to or outperform traditional approaches. Methods based on Gaussian processes are particularly effective as they enable good models to be estimated from limited training data. Furthermore, they provide an explicit estimate of the uncertainty which is particularly useful for reinforcement learning. This article explores the additional steps that are necessary to extend these methods to model multiple dialogue domains. We show that Gaussian process reinforcement learning is an elegant framework that naturally supports a range of methods, including prior knowledge, Bayesian committee machines and multi-agent learning, for facilitating extensible and adaptable dialogue systems

    Continuously Learning Neural Dialogue Management

    No full text
    We describe a two-step approach for dialogue management in task-oriented spoken dialogue systems. A unified neural network framework is proposed to enable the system to first learn by supervision from a set of dialogue data and then continuously improve its behaviour via reinforcement learning, all using gradient-based algorithms on one single model. The experiments demonstrate the supervised model's effectiveness in the corpus-based evaluation, with user simulation, and with paid human subjects. The use of reinforcement learning further improves the model's performance in both interactive settings, especially under higher-noise conditions

    Conditional Generation and Snapshot Learning in Neural Dialogue Systems

    No full text
    Recently a variety of LSTM-based conditional language models (LM) have been applied across a range of language generation tasks. In this work we study various model architectures and different ways to represent and aggregate the source information in an end-to-end neural dialogue system framework. A method called snapshot learning is also proposed to facilitate learning from supervised sequential signals by applying a companion cross-entropy objective function to the conditioning vector. The experimental and analytical results demonstrate firstly that competition occurs between the conditioning vector and the LM, and the differing architectures provide different trade-offs between the two. Secondly, the discriminative power and transparency of the conditioning vector is key to providing both model interpretability and better performance. Thirdly, snapshot learning leads to consistent performance improvements independent of which architecture is used
    corecore